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Abstract. Spin- and charge-density-wave (SDW, CDW) instabilities are formulated starting 
from the one-dimensional Anderson lattice model by deriving microscopic gap equations. 
In the infinite-U case, we show that SDW phase does not appear but CDW may occur. The 
reason for this difference is that the physical meaning of the slave-boson fluctuation is the 
fluctuation of charge. In order to incorporate spin fluctuations, application of the ‘finite-Lr 
slave-boson technique is proposed. Qualitative features of SDW phase described by the 
second-order gap equation are discussed. 

1. Introduction 

One of the main topics of interest in research on heavy-fermion systems (Stewart 
1984) is how the grand states at lower temperatures, namely, Fermi liquid states, 
superconductivity and magnetic instabilities, are realised. 

Experimentally, the ground states of Ce heavy-fermion systems were classified in 
the following way: normal Fermi liquid states, for example, in CeA13 (Andres et a1 1975) 
and CeCuh (Stewart et a1 1984); exotic superconductivity in CeCu2Si2 (Steglich et a1 
1979); and antiferromagnetic ordered states, for instance, in CeAlz (Barbara et a1 1977). 
However, Barth et a1 (1987) found that CeA13 displays a weak magnetic ordering 
at temperatures lower than TN = 1.2 Kin a muon spin-resonance (,LLSR) experiment. The 
effective moment is estimated as at most 0 . 3 , ~ ~ ~  and this may be due to an incom- 
mensurate spin-density wave (SDW) state. Also, a doping effect on CeCud (Gan- 
gopadhyay et a1 1988) induces antiferromagnetic ordering. Then, heavy Fermi liquid 
states are very close to magnetic ordered states. This property is also found in the 
superconductor CeCu2Si2 (Onuki and Komatsubara 1988, Uemura et a1 1989); exotic 
superconductivity and antiferromagnetic ordering are found to coexist at temperatures 
lower than 0.6 K. Material-independent properties of the antiferromagnetism in Ce 
compounds are that the magnitude of the magnetic moment is extraordinarily small (of 
the order of 0.1 pg) and that the NCel point has the value TN - 1 K. The magnetism 
occurs in the coherent Kondo state. The magnitude of TN is lower than the Kondo 
temperature TK.  

Theoretical efforts to understand these properties are only at the initial stage. For 
instance, the coexistence of anisotropic superconductivity and SDW (Kato and Machida 
1987) is analysed based upon the two-dimensional Hubbard model. Ferromagnetism 
(Cox 1987) is discussed in the molecular-field approximation for the classical 4f-spins. An 

0953-8984/89/5110459 + 13 $02.50 @ 1989 IOP Publishing Ltd 1045 9 



10460 K Harigaya 

effective interaction between 4f-electrons due to the slave-boson fluctuation (Doniach 
1987) is proposed to explain the antiferromagnetism. Competition between the Kondo 
effect and the RKKY interaction in Kondo lattices is studied and compared with the 
experiment (Yamamoto and Ohkawa 1988). 

The purpose of the present paper is to formulate the 2kF-instabilities of heavy- 
fermion systems in a microscopic manner. The model is the one-dimensional infinite-U 
Anderson lattice by the slave-boson method (Coleman 1984, Read and Newns 1984). 
Real materials are three-dimensional. However, 2kF-instabilities can be easily formu- 
lated by the one-dimensional model. Discussions about this model are expected to give 
some insight into the physics of heavy-fermion systems. The interaction is mediated by 
the fluctuation of the slave boson around the mean-field value, which has been proposed 
in the pioneering work by Doniach (1987). He has derived an effective Hamiltonian due 
to the fourth-order interactions. In this paper, we derive microscopic gap equations in 
a diagrammatic way. The two-wave approximation is adopted. It is shown that the SDW 
state does not occur in our theory, in contrast to Doniach's. However, the charge- 
density-wave (CDW) instability may occur. The reason for this contradiction is that 
the Bose fluctuation does not induce a spin fluctuation. The physical meaning of the 
fluctuation is the fluctuation of charge. The properties of the CDW state due to this 
interaction are discussed. Further, we propose to use the 'finite-U' slave-boson method 
(Zou and Anderson 1988), which has been formulated for high-T, superconductors, in 
order that we treat spin fluctuations for the description of the SDW phase. Qualitative 
features of the SDW are discussed. 

In the following section, the mean-field theory is reviewed and interaction between 
heavy fermions is explained. In 0 3, we derive a gap equation for SDW and show that the 
mechanism of Doniach is not applicable. Section 4 is devoted to CDW instability due to 
the fluctuation. In 0 5 ,  we propose to use the 'finite-U' slave-boson method to formulate 
the SDW. We summarise the paper in 0 6. 

2. Interactions among heavy quasi-particles in the infinite4 Anderson lattice 

We start from the one-dimensional infinite-U Anderson lattice model and make use of 
the slave-boson technique (Coleman 1984). The Hamiltonian is given by 

where fi0 is an operator that annihilates a 4f-electron with spin 0 at the ith lattice site 
whose atomic level has energy -Ef. The quantity Ef is taken to be positive. The variable 
Cka is an annihilation operator of a conduction electron with wavenumber k and spin 0. 

For simplicity, it is assumed that the conduction electron orbitals have the same mag- 
nitude of spin a a s  that of the 4f-electrons. The density of states per site of the conduction 
band is assumed to be constant as p = 1 /20  at -D < &k < D and zero elsewhere; the 
dispersion relation is defined as 
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& k  = -D + 2Dlkl/kD 
where kD is the maximum value of the wavenumber. We define c,, by the relation 

c,, = N - ' I ~  exp(ikli,)ck,. 
k 

Possible anisotropy in the mixing strength Vis not considered. The operator b, annihilates 
a slave boson at the ith site. It is introduced to exclude the possibility that two or more 
electrons occupy the 4f-orbitals of the ith site. The constraints 

2fLftU + b:b, = 1 (2 * 2) 
U 

are imposed for each i. They are taken into account in the Hamiltonian (2.1) with 
Lagrange multiplier A,. Since we study only the solutions in which AI  is site-independent, 
we put 

We assume the Fermi level is p = 0 so that TK does not depend on temperature: 
A, = A  for all i. (2.3) 

TK = D exp( - DEf/V2).  
The mean-field theory (Read and Newns 1984) assumes the Bose condensation of 

the slave boson. The ansatz is 
for all i. 

The meaning of the mean field r is that the charge fluctuation is ineffective at low 
temperaturesin heavy-fermion systemsin the first approximation. The mean-field theory 
successfully explains the experimental situations quantitatively: for example, universal 
behaviours in the specific heat susceptibility, and resistivity (Auerbach and Levin 1986a, 
b); elastic anomalies (Thalmeier 1987) at low temperatures. We treat the heavy quasi- 
particles described by the mean-field approximation. 

The mean-field parameters, r and A, are determined by two coupled equations (Read 
and Newns 1984). One is the self-consistency condition: 

( b f ) m f  = ( b i ) m f  = Y (2 9 4) 

The other is the constraint equation (2.2): 

Here, we denote the dispersion relations of the upper and lower bsnd electrons as E + ( k )  
and E - ( k ) ,  respectively. They are given by 

where Ef = - Ef + A .  We have denoted the Fermi function as 

Solutions of equations (2.5) and (2.6) have the magnitudes r2 
T = 0 K (Read and Newns 1984). The mass enhancement factor is 

E ,  ( k )  = 4{Ef + &k t [ ( E ,  - 

f(x> = l / bP(X/T)  + 11. 

m*/m = {[dE-  (k)/d&k]IE-(k)=O}-' = D/TK. 

kF = + k , ( ~  + r2V2/DEf)  

+ 4r2V2]1/2} (2.7) 

DTK/V2 and Ef -- TK at 

The number of electrons is less than 2, which means that the Fermi level crosses the 
lower band. The Fermi wavenumber is given by 

which is incommensurate with the lattice in general. 
(2.8) 
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As we discuss the 2kF-instabilities in heavy-fermion systems at low temperatures, it 
is sufficient to reserve the contribution of the electrons that fill the lower band and 
the fluctuation part of the slave boson. Also, we drop the spontaneous creation and 
annihilation processes of the fluctuation particle, because these processes must not be 
included in the interactions (Auerbach and Levin 1986a, Millis and Lee 1987). The 
effective Hamiltonian becomes 

V 
+ -2 N'12 k o  ( - U p U k + p ) ( P I B ~ o B k + p . o  + B l + p , o B p o p k )  (2.9) 

where Bko denotes the annihilation operator of the lower band electrons, which is 
connected to f k o  and c k o  by the relation 

B k o  = U k f k o  - u k c k o ,  

The annihilation operator of the upper band electron is defined as 

The quantities u k  and v k  are coefficients of the unitary transformation. They have the 
forms 

u k  = [E-(k) - Ef]/[E-(k) - Ef)2 f Y2v2]1'2 (2.10) 

and 

U k  = rV/[(E-(k) - f r2v2]1/2 (2.11) 

The operator pi is the fluctuation component of the slave boson (p-boson), which is 
defined by pi = bi - r .  

We define the annihilation operators of the right- and left-moving electrons as 

B r )  = B k + k F  for -kF < k < kD - kF 

and 

B(-)  = B k - k F  for -kD + kF < k < kF k 

respectively. The Hamiltonian (2.9) becomes 

where the origin of the wavenumber is at the Fermi level, which implies that E(+)(k) = 
E - ( k  + kF) and E(-)(k) = E - ( k  - kF); the quantities U?) and v r )  are obtained by 
replacing E-(k) with E(')(k) in equations (2.10) and (2.11), respectively. 



SDW and CDW in heavy fermions 10463 

3. Gap equation for a SDW instability 

Doniach (1987) has treated the P-boson-electron interaction as a perturbation and 
derived an effective Hamiltonian as the result of the fourth-order interactions. He has 
argued SDW instability depending upon this effective Hamiltonian. The electrons in the 
internal processes of the interaction are not renormalised by the 2kF-interaction. We 
argue this effect by deriving an SDW gap equation in a diagrammatic method. 

In order to formulate the helical SDW state, we define operators of electrons as 
C r )  = and CL;) = BL;!o, Then, the Hamiltonian (2.12) is decoupled into the 
folfowing form: 

%eff = %O + %SDW (3.1) 

where 

%(J = [ E ( + ) ( k ) C c ) t  cg) + E ( - ) ( k ) C ( - ) t  c(-)] + Ax P L P k  (3. l a )  
k ko ko ko 

- k U ( + ) v ( - )  k + p  k + p . o  c(+) k-o  P p - 2 k F  - u ~ - ) u i ~ ~ C ~ ~ p i , o C i ~ ) P p ) + H C ] .  (3.1b) 

Diagonal propagators for non-interacting heavy electrons are defined by 

G,++(T, k )  = - ( T , C ~ ) ( Z ) C ~ ) ( O ) )  ( 3 . 2 ~ )  

(3.2b) 

Also, we define the non-interacting P-boson propagator as 

D ( z ,  k )  = - (TzPk(r)P:(o)>. (3.3) 

Their Fourier transformations are calculated with the help of equation ( 3 . 1 ~ )  to be 

G,++(iw, k )  = 1/[io - E ( + ) ( k ) ]  

G;-(iw, k )  = l/[iw - E ( - ) ( k ) ]  

(3.4a) 

(3.4b) 

and 

D(iv) = 1/(iv - A )  (3.4c) 

where w and v are odd and even Matsubara frequencies, respectively. As equation 
( 3 . 4 ~ )  does not depend on the momentum, the index of the momentum is dropped. 

Helical SDW instability can be formulated by interactions due to XsDw. We denote 
perturbed propagators as G;' (z, z' = k). They are defined by the Dyson equations 

G:+(iw, k )  = G,++(iw,k) + G,' - ( iw,k)X,+( iw,k)G,++( iw,k)  ( 3 . 5 ~ )  

and 

G ,+ - (iw , k )  = G ,+ + (i w , k)X : - (iw , k )  G ; - (iw , k )  (3.56) 

where Z:- and Xi+ are the anomalous self-energy parts, which act as order parameters 
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Figure 1. Diagrammatic representation of the 
Dyson equations ( 3 . 5 ~ )  and (3.56). Single lines 
represent unrenormalised propagators of elec- 
trons. Double lines indicate renormalised propa- 
gators. 

Figure 2. Gap equation of the SDW in the infinite- 
U case. The wavy line represents the P-boson 
propagator. + 

of the SDW. Equations (3.52) and (3.56) are illustrated in figure 1. We approximate 
Z:- and Z;+ by the forms of the second-order self-energies where the internal lines of 
electrons are renormalised. Note that it is needless to consider renormalisation effects on 
D(iv) at low temperatures T < T K ,  because the/?-boson is massive enough: A - Ef B TK.  
The quantity Z:-(io, k )  is given by 

Z:-(io,k) = - v ~ v ~ ) u ~ - ) ( T / N )  u~)ul;)d:-(iw’,p)D(iw - io’> 
iw’ .p  

- v ~ ~ ~ : - ) ( T / N )  2 v~)v~-)G, ‘ - ( io’ ,p)D( iw’  - io ) .  (3.6) 
i w ’ , p  

The structure of equation (3.6) is illustrated in figure 2. We can write down Z;+(io,k) 
in the same way. Hence, we find that C:- and Z;+ have the same form and do not 
depend on the suffix B. So, it is convenient to define the notation 

ZCA(io,  k )  = Z:-(io, k )  = C;+(iw, k ) .  (3.7) 
We perform a static approximation for the /?-boson and set D = l/(-A) in equation 

(3.6). This is a valid approximation at low temperatures. As the excitation around the 
Fermi level is important for the 2kF-instabilities, it is enough to consider the static order 
parameter, i.e. C A ( k )  ZA(O, k ) .  Equation (3.6) is transformed into 

where Ei (p )  (i = 1,2)  are solutions of the equation 

and are given by 

Further, we can simplify equation (3 .8) by the effective-mass approximation at the Fermi 
level: 

and 

Z i ( p )  = [U - E ( + ) ( p ) ] [ o  - E ( - ) ( p ) ]  

E : i ( p ) = i ( E ( + ) ( p )  + E ( - ) ( p )  k [ ( E ( ’ ) ( p )  - E ( - ) ( P ) ) ~  + 4 Z l ( ~ ) ] ’ ’ ~ } .  (3 9) 

E(+)@) = 2D(m/m*)(k/kL4 
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E ( - )  (k) = - 2D( m/m*)( k/kD ). 

We shall approximate coefficients of the unitary transformation by the magnitudes at 
the Fermi level: 

U?) 21 - (m/m*)'/2 and v'kr' 21 (1 - m / n z * ) ' / 2  - 1. 

The order parameter &(k) is also replaced by the value at k = 0: A = XA(0). Hence, 
equation (3.8) becomes 

x { 2A [ 4D2 &I2 + A2]  
m* kD 

(3.10) 

where k, is a cut-off of the momentum. The approximation used in deriving equation 
(3.10) is intended to retain the essence of the one-dimensional model: effects of the 
complete nesting of the Fermi surface. A more rigorous numerical treatment of equation 
(3.8) is not expected to alter the result of this paper. 

It is found that the signs of the left- and right-hand sides of equation (3.10) do not 
agree. Equation (3.10) does not have solutions where A =# 0. This means that SDW 
instability does not occur by interactions with the fluctuation. If the internal lines of 
electrons of the effective interaction of Doniach's model are renormalised, this model 
does not describe a SDW instability. 

4. CDW due to charge fluctuation 

One of the 2kF-instabilities is a CDW instability. We shall consider the possibility of CDW 
by the model of equation (2.12). This equation is decoupled into diagonal and interaction 
parts as 

%eff = %O + xCDW (4.1) 
where 

We define diagonal propagators of electrons as 

G:+(T,  k) = - (T,Bg)(z)Bcj'(O)) ( 4 . 2 ~ )  

and 

G,-( t ,  k) = - (TTBL~j(z)BL~)'(0)). (4.2b) 

It is noted that we employ the same notation, G and G, in this section as in § 3 for 
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Figure 3. Gap equation of the CDW in the infinite-Ucase. 

convenience, though the definitions are changed. The Dyson equations are the same as 
equations ( 3 . 5 ~ )  and (3.56). The anomalous self-energy part for CDW instability becomes 

T 
Z’+-(iw, k )  = - V 2 u p ) u ( - )  - u ~ ) u ~ - ) G + - ( i w ’ , p ) D ( i o  - io’)  

N i w ’ . p  

A diagrammatic representation of equation (4.3) is given in figure 3. The same sim- 
plifications of equation (4.3) as in P 3 give 

x {2E. [4D2 (EL)2  m* k D  + A2]1’2]-1 (4.4) 

where A = 2’- (0,O). 
Fortunately, solutions exist to equation (4.4). This is due to the difference between 

equations (3.6) and (4.3). The first and second terms on the right-hand sides are math- 
ematically equivalent. But, there are the third and fourth terms in equation (4.3), which 
correspond to tadpole diagrams in figure 3. These ‘vacuum-fluctuation’ contributions 
overcome the first and second terms to change the minus sign of equation (3.10) into the 
plus sign of equation (4.4). Originally, the b-boson is attributed to the state where the 
4f-electrons do not exist. So, it is obvious that the fluctuation field, namely, the /?-boson, 
mediates charge-fluctuation processes among heavy quasi-particles. This is the physical 
reason why the SDW instability does not occur but the CDW instability may occur due to 
the p-boson-electron interactions. Mathematically, the difference is represented by the 
presence of tadpole diagrams. 
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Actually, CDW phases have not been experimentally observed yet. But it might be 
theoretically interesting to see properties of the CDW. Equation (4.4) is transformed into 

tanh{[l/(2T)](x2 + A2)l/*} 

(x’ + A2)*/* (4.5) 

where A is a cut-off of the energy, A = 2D(m/m*)(k,/kD); it has a magnitude of the 
order of TK. The transition temperature T, is calculated to be 

T, = 1.134Aexp( -2DA/V2) - A(TK/D)*. (4.6) 

This is much smaller than TK. It will be difficult to observe this phase transition even if 
it occurs. We also calculate the order parameter at T = 0 to obtain A = 2A exp( - 2DA/ 
V2) - ~ A ( T K / D ) ~ .  Then, the ordered charge per site is estimated to be 

T AA m T, AA 
2 - 2  G+-( iw,k)  I Nico,k D DTK (4.7) 

where nf is the number of f-electrons per site. The quantity AA/DTK may have the order 
of unity. The charge ordering by the present mechanism is very small. 

5. A gap equation of SDW in ‘finite-U’ Anderson lattice 

In previous sections, we have considered the infinite-U Anderson lattice. Interaction 
among electrons is via charge fluctuation mediated by the P-boson. Spin fluctuation in 
each lattice site has not been considered in the infinite-U model. However, in real 
materials, it is expected that spin fluctuation takes part in the dynamics of valence 
fluctuations. Observation of magnetic order may be the explicit evidence. In this section, 
we propose to formulate a SDW instability due to spin fluctuation by extending the slave- 
boson method to a ‘finite-U’ system. This extension has been performed in the theory 
of the high-Tc oxide superconductors (Zou and Anderson 1988). 

We shall consider the following model: 

= 2 (-Ef)f :ofto f 2 (-2Ef + U)d!di + 2 & k C l u C k o  
IC7 I ko 

+ v c  [(flab, + 4 f l , - u > c l a  + HCI 
lo 

+ ~ A i ( ~ f ~ u f i u + b ~ b i + d ~ d i - l  i U 

where an additional slave boson d, is introduced to represent the doubly occupied 4f- 
state at the ith lattice site; the energy of the d-boson is -2Ef + U. Accordingly, the form 
of the mixing interaction is changed. Also, the constraint (2.2) is transformed into 

2 f:JiU + bib, + drd i  = 1. 
U 

We consider the mean-field approximation for d-bosons. This generates curious 
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unphysical processes from the mixing term: pair annihilation and creation processes of 
f-  and c-electrons of the form 

V(d)  IC 4fi. -oC,o + 48, - U ) .  

Io 

The expectation value of this term must be zero. Then, the mean-field free energy is 
parabolic with respect to ( d ) ,  without linear terms in ( d ) .  This implies ( d )  = 0. We treat 
the d-boson-electron interactions by explicit perturbations. This may be valid if the 
mean-field approximation for b-bosons describes well the band structure of heavy 
fermions. Introducing the mean field r ,  the value of which does not change from that in 
previous sections, and performing the two-wave approximation as in 0 2, we transform 
equation (5.1) into the effective Hamiltonian 

Xeff = XO + X S D W  (5 .3)  

where 

xo  = [E(+)(k)C(+&ItC(+) + E(-) (k )C(- )+C(- )]  
ko ko ko 

ko 

(5.3a) 

(5.3b) 

where operators Cg)  = I?(+) ko and Cc-1 ko = Bi:!o are introduced in order to consider 
helical SDW instability. A propagator of the d-boson is defined as 

Its Fourier transform is 

Dd(iv) = l/[iv - ( -2Ef + U + A)]. ( 5 . 5 )  

Definitions of other propagators are the same as in 0 3. The gap equation can be derived 
in a form of the second-order self-energy part. The result is 
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Figure 4. Gap equation of the SDW by the ‘finite-CT slave-boson technique. The zigzag line 
indicates the d-boson propagator Dd.  

x G;-(iu’, p )Dd( io  + iw’). (5.6) 
The corresponding diagram is shown in figure 4. It should be noted that the third term 
of equation (5.6) contains the fermion loop so that the factor ( - 1 )  is multiplied. 

Performing the static approximation for p- and d-boson propagators and defining 
A C:-(O, 0), we obtain the reduced gap equation 

A = (  2 v 2  ( 2 p ) 2 + A 2 ] 1 ’ 2 }  m* kD 

The condition that non-zero solutions exist in equation (5.7) is 

Equation (5.8) is transformed into 

U < 2Ef + A 3E f .  

(5.7) 

(5.9) 
Then, we find that there is a maximum value for U ,  below which the SDW occurs in the 
second-order gap equation. As Ef  is of the order of D ,  equation (5.9) may be a not too 
strong condition. 

We estimate properties of the SDW. The transition temperature TN is calculated as in 
0 4 to be 

(5.10) 

For example, when U = ; E f ,  we obtain TN - A(Ti/D).  The quantity T i  is the Kondo 
temperature of the finite-U system: 

TN = 1.134A exp( - 2D/J). 

T;  = D exp{ - D [ ( V 2 / E f )  - V 2 / ( U  - Ef)] - ’} .  

We expect that the relation T N  < TZ holds for general values of U. At T = 0, we can 
calculate the order parameter to obtain A = 2 A  exp( - 2D/J). The ordered moment per 
site is estimated to be 

when U = $ E f .  Here, the quantity nf is the number of f-electrons per site. As we take 



10470 K Harigaya 

the quantity AA/DTZ to be of the order of unity, we can say that equation (5.11) might 
explain the experimental finding that the magnitude of the magnetic moment is very 
small. Although precise quantitative discussions are not within the scope of our present 
theory, our results might have something to do with the properties of the anti- 
ferromagnetism in heavy-fermion systems that the NCel temperature is very low and the 
magnetic moment is small. 

6. Summary and discussions 

We have formulated the 2kF-instabilities in heavy-fermion systems starting from the 
one-dimensional Anderson lattice model by deriving microscopic gap equations. In the 
infinite-U case, we have shown that the SDW phase does not appear but the CDW may 
occur. It is pointedout that thereason forthedifferenceisthat theslave-bosonfluctuation 
mediates the charge-fluctuation processes physically. In order to formulate the SDW 
phase, we have proposed to adopt the 'finite-U' slave-boson method. The gap equation 
has been derived by second-order perturbations. It is found that the SDW phase can 
appear for a suitable range of parameters. We have considered whether the properties 
of the SDW, i.e. low Nee1 temperature and small magnitude of magnetic order, may 
be understood by our formalism, even if quantitative discussions must await future 
research. 

The drastic conclusion, the absence of the SDW in the infinite-U model, might have 
come from the one-dimensional nature: possible scattering processes are highly reduced 
on the limited Fermi surface. This effect strongly separates different ordered phases. 

We have treated the heavy quasi-particles by the mean-field approximation. Con- 
struction of a theory that does not depend on the mean field is a difficult but important 
problem. It must be checked whether our qualitative discussions are changed or not. 
These problems will wait for further research. 

We can treat complete nesting of the Fermi surface by one-dimensional models. 
However, real compounds are three-dimensional. The nesting may not be complete; 
coexistence of different ordered phases, for example, superconductivity and anti- 
ferromagnetism, is reported. It is an interesting problem to extend our theory to the 
higher-dimensional model and analyse the cross-over between some ordered states due 
to the incomplete nesting. 
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